Vertical free-space system
Clamping force: 250 kN
Injection unit (acc. to EUROMAP): 70, 100
Machine dimensions

Vertikal-version

Horizontal version

Horizontal / vertical version

1) Dimensions for injection unit 70
2) Dimensions for injection unit 100
3) Additional control cabinet dependent on installed power consumption or options
Technical data

Machine model

<table>
<thead>
<tr>
<th>EUROMAP size indication①</th>
<th>275 V</th>
<th>275 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250-70</td>
<td>250-100</td>
</tr>
</tbody>
</table>

Clamping unit

<table>
<thead>
<tr>
<th></th>
<th>Max. kN</th>
<th>Max. kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping force</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Closing force</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Opening force</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Opening stroke</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Mould height</td>
<td>150-250</td>
<td>150-250</td>
</tr>
<tr>
<td>Daylight</td>
<td>375-475</td>
<td>375-475</td>
</tr>
<tr>
<td>Weight of mov. mould half②</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Ejector force</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Ejector stroke</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Hydraulics, drive, general

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive power of the hydraulic pump</td>
<td>7,5</td>
<td>7,5</td>
</tr>
<tr>
<td>Dry cycle time for opening stroke②</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total connected load③</td>
<td>13,9</td>
<td>15</td>
</tr>
</tbody>
</table>

Control cabinet

<table>
<thead>
<tr>
<th></th>
<th>DIN EN 60204</th>
<th>DIN EN 60204</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety standard</td>
<td>1 x 16 A</td>
<td>1 x 16 A</td>
</tr>
<tr>
<td>Socket combination</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Screw diameter</td>
<td>18 / 22 / 25</td>
<td>20 / 25 / 30</td>
</tr>
<tr>
<td>Effective screw length</td>
<td>24,5 / 20 / 17,5</td>
<td>25 / 20 / 16,7</td>
</tr>
<tr>
<td>Screw stroke</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Calculated injection volume</td>
<td>23 / 34 / 44</td>
<td>31 / 49 / 71</td>
</tr>
<tr>
<td>Shot weights</td>
<td>21 / 31 / 40</td>
<td>29 / 45 / 65</td>
</tr>
<tr>
<td>Material throughput④</td>
<td>4,1 / 5,5 / 6,5</td>
<td>5,5 / 8 / 9,5</td>
</tr>
<tr>
<td></td>
<td>2,1 / 2,8 / 3,3</td>
<td>2,8 / 4 / 4,9</td>
</tr>
<tr>
<td>Injection pressure③</td>
<td>2500 / 2000 / 1550</td>
<td>2500 / 2000 / 1390</td>
</tr>
<tr>
<td>Injection flow③</td>
<td>42 / 62 / 80</td>
<td>40 / 62 / 90</td>
</tr>
<tr>
<td>Back pressure positive/relative</td>
<td>350 / 200</td>
<td>350 / 200</td>
</tr>
<tr>
<td>Circumferential screw speed</td>
<td>24 / 30 / 34</td>
<td>17 / 22 / 26</td>
</tr>
<tr>
<td>Screw torque</td>
<td>90 / 110 / 120</td>
<td>120 / 150 / 180</td>
</tr>
<tr>
<td>Nozzle contact force</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Nozzle retraction stroke</td>
<td>150</td>
<td>180</td>
</tr>
<tr>
<td>Installed cylinder heating power / heating zones</td>
<td>3,75 / 3</td>
<td>4,3 / 4</td>
</tr>
<tr>
<td>Installed nozzle heating power</td>
<td>0,3</td>
<td>0,6</td>
</tr>
<tr>
<td>Material hopper capacity</td>
<td>l</td>
<td>8</td>
</tr>
</tbody>
</table>

Machine dimensions and weights of the basic machine

<table>
<thead>
<tr>
<th></th>
<th>80</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil capacity</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Net weight</td>
<td>1750</td>
<td>1750</td>
</tr>
<tr>
<td>Electrical connection⑥</td>
<td>A</td>
<td>50</td>
</tr>
</tbody>
</table>

1) 1st figure: clamping force (kN), 2nd figure: max. dosage volume (cm³) x max. injection pressure (bar)
2) Values refer to 400 V/50 Hz. The load is symmetrically distributed on three phases (observe phase loading when installing new equipment).
3) A combination of max. injection pressure and max. injection flow (max. injection capacity) can be mutually exclusive, depending on the equipment-related motor output.
4) Deviations are possible depending upon process settings and material type
5) According to EUROMAP for basic machine.
6) Restriction only applies to vertical injection units

The shown specifications reflect the state at the time of printing. In the interest of a continuous development of our products, we reserve the right to modify specifications.
Control system and control cabinet
- SELOGICA direct (touchscreen user interface for direct data access)
- Available in different language versions
- Language change
- Cycle sequence programming with symbols
- Cycle step display in sequence diagram
- Cycle time diagram
- Swivelling monitor unit, central on the operator’s side, with colour monitor
- Process graphics for injection speed, screw stroke and injection pressure
- Quality assurance program with fault evaluation and monitoring chart
- Optimisation and user help, follow-on functions at cycle end, for freely programmable parameter pages, selectable units
- Modular control cabinet design with self-recognition of plug in circuit board system
- Operating modes:
 - Set up
 - Freely programmed test run
 - Reconfiguration
 - Automatic purging and dosing
- Equipment for switch-over to holding pressure via injection pressure, material pressure with different pressure transducers, or via external switch signal
- Data record management via Compact Flash
- Visual warning signal (warning lamp)
- Visual / audible warning signal (flashing light / siren)
- Printer interface for hard copy, data record and quality protocol
- Interfaces for: PC keyboard, plotter, robotic system in accordance with EUROMAP 67, host processor, AOC, ALLROUNDER@web, colouring unit, LSR dosing system, INJESTER, container change, THERMOLIFT, hot runner control unit and temperature control units for moulds and cylinder
- Socket combination 1 CEE, 1 Schuko 230 V
- Socket combination 1 CEE, 1 Schuko or 3 CEE, 3 Schuko 230 V with external supply line
- 1 additional heating regulation circuit for the nozzle
- Electric heating regulation circuits for moulds (adaptive) (3, 6, 9, 12); mould heating fused at 10 A
- Fuses for mould heating 16 A
- 4 or 8 freely programmable inputs / outputs
- Core pull programs in many versions integrated in the SELOGICA control system
- Special processes such as injection coining and mould venting
- Monitoring: freely-programmable position monitoring

Machine base and hydraulic system
- Free standing machine base on anti-vibration pads
- Guarding, down stroking, adjustable on the parting line
- Space for peripheral devices within floor space
- The hydraulic system operates with an energy-saving variable displacement pump and a servo valve for pressure and speed regulation
- Monitoring of oil level, oil temperature and oil filter contamination
- Fine mesh oil filter in the return line
- Mechanical regulation of hydraulic oil temperature
- Electronic regulation of hydraulic oil temperature. Display and monitoring via screen
- Hydraulic oil preheating program to reduce start-up time
- Manually adjustable, machine-related cooling water circuits with 2 free mould connections
- 4 free cooling water circuits, manually adjustable
- Programmable, machine and mould-related cooling water circuits
- 1 or 2 central shut-off valves for cooling water (supply and/or return)

Clamping unit
- Clamping unit with free-space system
- Centrally applied fully hydraulic clamping system. Fixed mould platen positioned at bottom
- Mould height adjustment for achieving different mould installation heights
- Movement profiles for the mould clamping unit are programmable and regulated. They are serially driven using energy-saving one-circuit pump technology (technology stage 1)
- Closing and opening profiles are programmable in 2 stages
- Intermediate stop possible in closing and opening movements
- Regulated hydraulic mould protection with monitoring of mould protection time. Follow-up functions: open or stop after 1 or 2 activations of mould protection
- Extended mould protection (e.g. for spring moulds). Freely-programmable start and end
- Automatic ramp function during switch-over to a lower speed and for stop of driven movements
- Hydraulic ejector integrated into the clamping system
- Hydraulic ejector: forces and speeds, multiple stroke (up to 10) and ejector advanced at end of cycle are programmable
- Mould monitoring via ejector platen safety switch
- Hydraulic core pulls with rapid connect couplings, connections to hydraulic manifold
- Hydraulic core pull movement profiles programmable and regulated
- Core hold on pressure manually adjustable
- Pressure hold programmable
- Power-operated safety gate
- Mould blow unit with pressure relief valve
- Mechanical mould closing protection
- Rotary table with servo-electric rotary drive

Injection unit
- Modular injection unit as complete assembly group
- Vertical injection unit
- Device for horizontal injection into the parting line
- Lifting device for parting line injection unit
- Plasticising module with universal screw, central coupling and adaptive temperature regulation, available in different diameters
- Thermoplastic cylinder with universal screw in wear resistant execution
- Thermoplastic cylinder in very high wear resistant execution
- Plasticising module for processing thermoset, elastomer and silicone materials
- Thermoplastic screws for special applications, e.g. self-colouring (mixing section), PVC (shear-sensitive), POM, PA (semi-crystalline)
- Programmable nozzle speeds (advance 2, retract 1 stage) and advance and retract delay
- Monitored nozzle contact
- Continuous nozzle contact during the complete cycle
- Programmable nozzle contact force
Equipment

- Regulated nozzle contact force
- Regulated injection speed profile, 2 steps programmable with injection delay
- Position-regulated screw (forced movement of injection axis)
- Injection process control with external sensor
- Measurement, display and monitoring of the injection time, switch-over volume and switch-over pressure
- Switch-over to holding pressure as a volume or time-dependent function
- Material cushion monitoring
- Holding pressure profile regulated via polygon with 4 base points
- Programmable delay times for all movements
- Screw circumferential speed display
- Positive and negative programmable back pressure
- Dosage time display with programmable dosage time monitoring
- Dosage possible before or after nozzle retraction
- Material decompression with programmable decompression speed
- Dosage with electro-mechanical servo drive, energy-saving
- Nozzle contact force relief for continuous nozzle contact
- Open nozzle with screw-in tip
- Needle type shut off nozzle, spring force actuated
- Needle type shut off nozzle, hydraulically actuated
- Zone-dependent monitoring of heating circuits for continuity, short circuit and defective sensors
- Temperature monitoring with release tolerance range and zone-dependent monitoring tolerance
- Automatic temperature sink can be selected in case of error or after automatic switch-off
- 8 litre corrosion proof stainless steel material hopper movable to a blocking and emptying position
- Granulate feed zone temperature programmable and regulated with monitoring

Extended functions
- Extended monitoring of the mechanical sequence of mould and machine for complex applications
- Extended drive movements: increase in number of movement stages, intermediate stop functions and extended locking force program
- Production control with nominal temperature value control, programmable alarm cycles, programmable switch-on / switch-off sequences as well as time-controlled automatic switch-on/off in second programming level for follow-up batch

Regulated parameters
- Control cabinet temperature
- Hydraulic oil temperature
- Plasticising cylinder temperature (adaptive)
- Screw rotation speed
- Injection flow or injection speed
- Holding pressure
- Movements and force of mould, nozzle and ejector
- Ramp function for movement of mould, ejector and nozzle movement
- Back pressure
- Electrical mould heating circuits (adaptive)
- Mould cooling circuits
- Internal cavity pressure or screw chamber pressure (external sensor)
- Screw position
- Granulate feed zone temperature

Basic machine
Options
Mould and platen layout

1. Nozzle in advanced position
 - Infinitely variable, max. 60°
 - Stroke max. 225
 - Min. 150 - 250 mould installation height

2. View E
 - Ø110 H7
 - Ø50
 - Ø28
 - Bore in mould only if shorter sprue is required.
 - Ejector pin without coupling
 - Ejector pin with coupling
 - Coupling

Mould installation dimensions for parting line injection

<table>
<thead>
<tr>
<th>Injection positions with hydraulic nozzle</th>
</tr>
</thead>
<tbody>
<tr>
<td>a min.</td>
</tr>
<tr>
<td>a max.</td>
</tr>
<tr>
<td>b min.</td>
</tr>
<tr>
<td>c min.</td>
</tr>
</tbody>
</table>

Bore in mould only if shorter sprue is required. Dimensions in conjunction with hydraulic nozzle upon request.
Mould and platen layout

Movable mould platen
(top)

View A

M12 thread - 24 deep

max. 365

M12 thread - 24 deep

rear guarding

M12 thread - 24 deep

max. 365

View B

M8 thread - 16 deep
Maximum shot weights

Maximum theoretical shot weights for the most important injection moulding materials (in grams)

<table>
<thead>
<tr>
<th>Injection units according to EUROMAP</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw diameter (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Styrene heteropolymerizates (SAN, ABS)</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Cellulose acetate (CA)</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>Celluloseacetobutyrate (CAB)</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>Polymethyl methacrylate (PMMA)</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>23</td>
<td>34</td>
</tr>
<tr>
<td>Polysulphone (PSU)</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>Polyamides (PA 6.6, PA 6<sup>1)</sup>)</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>Polyoximethylene (Polyacetal) (POM)</td>
<td>26</td>
<td>39</td>
</tr>
<tr>
<td>Polyethylene terphthalate (PET)</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>Polyethylene (PE-LD)</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Fluoropolymerides (FEP, PFA, PCTFE)</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC-U)</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC-P<sup>1)</sup>)</td>
<td>23</td>
<td>35</td>
</tr>
</tbody>
</table>

¹⁾ average value

ARBURG GmbH + Co KG

Postfach 11 09 · 72286 Lossburg · Tel.: +49(0)7446 33-0 · Fax: +49(0)7446 33-3365 · www.arburg.com · e-mail: contact@arburg.com

With locations in

Europe: Germany, Belgium, Denmark, France, United Kingdom, Italy, Netherlands, Austria, Poland, Switzerland, Slovakia, Spain, Czech Republic, Turkey, Hungary

Asia: People’s Republic of China, Indonesia, Malaysia, Singapore, Thailand

America: Brazil, Mexico, USA

For more information, please go to www.arburg.com.

© 2009 ARBURG GmbH + Co KG

This brochure is protected by copyright. Any utilisation, which is not expressly permitted under copyright legislation, requires the previous approval of ARBURG.

All data and technical information have been compiled with great care. However, we are unable to guarantee its correctness. Individual illustrations and information may deviate from the actual delivery condition of the machine. The relevant valid operating instructions are applicable for the installation and operation of the machine.

ARBURG GmbH + Co KG Quality:

DIN EN ISO 9001 + 14001 certified